This page was created by maji, majaco’s AI operational excellence tool.  maji  is in active development, so occasional inaccuracies may appear as the system continues to learn.
Majaco Efficiency Formulas | Quick Reference

Efficiency Formulas Quick Reference

Core majaco methodologies for measuring manufacturing efficiency, labour productivity, and lost time analysis. All formulas use UK English terminology and time-based measurement principles.

Core Time Definitions

Shift Time $$\text{Shift Time} = \text{All Time} - \text{Unscheduled Time}$$
Scheduled operational period (All Time = 24/7/365 Calendar Time)
Planned Production Time (PPT) $$\text{PPT} = \text{Shift Time} - \text{Schedule Loss}$$
Time explicitly scheduled for production with labour present. Denominator for OEE calculation.
PPT (Plan Layer) $$\text{PPT}_{\text{plan}} = \text{Run Time}_{\text{planned}} + \text{PDT}_{\text{(planned duration)}}$$
Planning perspective: sum of intended productive time and anticipated downtime durations
PPT (Actual Layer) $$\text{PPT}_{\text{actual}} = \text{Run Time}_{\text{actual}} + \text{PDT}_{\text{(planned duration, actual events)}}$$
Actual execution: sum of observed productive time and planned duration of actual PDT events that occurred (not actual event durations)
Potential Time (PT) $$\text{PT} = \frac{\text{Good Output}}{\text{BNS}}$$
Theoretical minimum time required to produce actual good output at bottleneck speed (BNS) with zero losses

Lost Time Categories

Lost Time Slow Running (LTSR) $$\text{LTSR} = (\text{BNS} - \text{Actual Speed}) \times \text{Good Output}$$
Time lost producing at below-theoretical speed whilst making good product
Lost Time Making Waste (LTMW) $$\text{LTMW} = \frac{\text{Waste Output}}{\text{BNS}}$$
Time consumed producing defective output at bottleneck speed
Planned Downtime (PDT) $$\text{PDT} = \text{PPT}_{\text{actual}} - \text{Run Time}_{\text{actual}}$$
Scheduled non-productive time within PPT: changeovers, planned maintenance, meetings, breaks, cleaning
Unplanned Downtime (UPDT) $$\text{UPDT} = \text{Run Time}_{\text{actual}} - \text{PT} - \text{LTSR} - \text{LTMW}$$
Unscheduled stoppages during intended productive time: breakdowns, starvation, blockages

Total Lost Time Verification

Total Lost Time (Two Formulations) $$\text{Total Lost Time} = \text{LTSR} + \text{LTMW} + \text{PDT} + \text{UPDT}$$ $$\text{Total Lost Time} = \text{PPT}_{\text{actual}} - \text{PT}$$
These must be mathematically equivalent. Discrepancy indicates measurement error in either output data or time allocation.

Efficiency Metrics Hierarchy

Metric Formula Strategic Context Primary Audience
Run Efficiency $\frac{\text{Potential Time}}{\text{Run Time}_{\text{actual}}}$ Universal Shop floor execution
Machine Efficiency $\frac{\text{Potential Time}}{\text{Shift Time}}$ Sales-constrained Production management
OEE $\frac{\text{Potential Time}}{\text{Planned Production Time}}$ Production-constrained Production management
OOE $\frac{\text{Potential Time}}{\text{Shift Time}}$ Production-constrained Production management
TEEP $\frac{\text{Potential Time}}{\text{Calendar Time}}$ Production-constrained strategic Senior leadership
Labour Efficiency $\frac{\text{Potential Labour Hours}}{\text{Actual Labour Hours}}$ Sales-constrained Production management

Note on OOE vs Machine Efficiency

OOE and Machine Efficiency are mathematically identical ($\frac{\text{Potential Time}}{\text{Shift Time}}$). The terminology distinction reflects strategic context:

Labour Efficiency Framework

Labour Efficiency (Primary) $$\text{Labour Efficiency} = \frac{\text{Potential Labour Hours}}{\text{Actual Labour Hours}}$$
Measures labour productivity relative to theoretical minimum labour requirement. Where: Potential Labour Hours = Potential Time × Potential Crew
Labour Efficiency (Alternative) $$\text{Labour Efficiency} = \text{Machine Efficiency} \times \frac{\text{Potential Crew}}{\text{Actual Crew}}$$
Decomposition separating equipment effectiveness (Machine Efficiency component) from labour deployment optimisation (crewing factor)
Packs Per Labour Hour (PPLH) $$\text{PPLH} = \frac{\text{Total Packs}}{\text{Total Labour Hours}}$$
Absolute labour productivity metric measuring units produced per person-hour of labour consumed
⚠️ Critical PPLH Formula (from configuration) $$\text{PPLH} = \frac{v_{\text{theoretical}} \times \text{OOE} \times 60}{\text{FTE}}$$

If only OEE available: $\text{OOE} = \text{OEE} \times \frac{\text{PPT}}{\text{Shift Time}}$

WARNING: Must use OOE (not OEE) because labour is paid for Shift Time

Standard OEE Decomposition

⚠️ OEE Multiplicative Formula $$\text{OEE} = \text{Availability} \times \text{Performance} \times \text{Quality}$$

Note: OEE and majaco's Lost Time framework use fundamentally different allocation methodologies. These frameworks cannot be mathematically translated bidirectionally.

⚠️ CRITICAL TERMINOLOGY DIFFERENCE

OEE "Run Time" = Time equipment physically running and producing (excludes unplanned downtime)

majaco "Actual Run Time" (Run Timeactual) = OEE Run Time + UPDT

Equivalently: $$\text{Run Time}_{\text{actual}} = \text{PT} + \text{LTSR} + \text{LTMW} + \text{UPDT}$$

These are NOT interchangeable. Using OEE Run Time in majaco formulas will produce incorrect results.

Availability $$\text{Availability} = \frac{\text{Run Time}}{\text{Planned Production Time}}$$
Proportion of PPT that equipment was actually running (physically operating and producing output). NOTE: OEE "Run Time" excludes unplanned downtime.
Performance $$\text{Performance} = \frac{\text{Ideal Cycle Time} \times \text{Total Pieces}}{\text{Run Time}}$$
OR: (Total Pieces/Run Time)/(Ideal Run Rate) | Captures all speed loss including slow running whilst making waste
Quality $$\text{Quality} = \frac{\text{Good Pieces}}{\text{Total Pieces}}$$
First-pass yield measuring percentage of production that met quality standards without rework

Diagnostic Decompositions

Machine Efficiency Decomposition $$\text{Machine Efficiency} = \text{Run Efficiency} \times \frac{\text{Run Time}_{\text{actual}}}{\text{Shift Time}}$$
Separates shop floor execution quality (Run Efficiency) from planning effectiveness in maximising operational window (Time Allocation Factor)
TEEP Decomposition $$\text{TEEP} = \text{OOE} \times \frac{\text{Shift Time}}{\text{Calendar Time}}$$
Isolates operational effectiveness during shifts (OOE) from strategic shift pattern deployment (Facility Utilisation Factor)

Valuation Formulas

Production-Constrained

Lost Output $$\text{Lost Output} = \text{Lost Time} \times \text{BNS}$$
Units that could have been produced if the lost time had been productive at bottleneck speed with no losses
Unit Marginal Profit (UMP) $$\text{UMP} = \text{Price} - \text{RM Cost} - \text{Processing} - \text{Distribution}$$
Profit per incremental unit. Excludes labour cost because labour is already paid during Lost Time.
Annual Value (Production-Constrained) $$\text{Annual Value} = \text{Lost Output} \times \text{UMP} \times \text{Operating Weeks}$$
Financial impact of throughput losses when market demand exceeds production capacity. Lost Time elimination increases output at full margin.

Sales-Constrained

Annual Value (Sales-Constrained) $$\text{Annual Value} = \text{Labour Hours Saved} \times \text{Fully Loaded Labour Rate}$$
Cost reduction potential when capacity exceeds demand. Lost Time elimination enables labour cost reduction while maintaining current output.

Key Relationships

Relationship Formula
Equipment Time $\text{Equipment Time} = \text{Time Basis} \times \text{Number of Lines}$
Labour Time $\text{Labour Time} = \text{Time Basis} \times \text{Number of People}$
Actual Run Time Verification $\text{Run Time}_{\text{actual}} = \text{PT} + \text{LTSR} + \text{LTMW} + \text{UPDT}$
Planning Rate from BNS $\text{Planning Rate} = \text{BNS} \times \text{Run Efficiency}_{\text{planned}}$